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Abstract — This paper presents a novel technique referred
to herein as MNM for efficient iterative solution of MoM
matrices over a broad frequency range. It utilizes a
combination of techniques to reduce the number of iterations
required to generate the solution including a special choice of
the initial guess, and efficient preconditioning. Numerical
results are presented to illustrate the application of the MNM
to representative microwave circuit analysis problems.

I. INTRODUCTION

The MoM formulation of Maxwell’s equations leads to
a dense system of complex equations, with thousands of
unknowns when the geometry is electrically large, or when
it has fine features that need to be resolved with sufficient
accuracy. A direct solution of large equations using LU
factorization is computer-intensive and this prompts one to
turn to iterative solvers, such as those based on Krylov
projection methods not only to alleviate the memory
problem but to speed up the solution process as well.
Typically, these iterative methods are used in conjunction
with some type of preconditioner to improve convergence
of the process [1-2]. Most of these Preconditioners provide
satisfactory performance only when the geometry of the
problem is electrically large; however, a typical MMIC
structure is often only a fraction of the wavelength in
dimensions, but still requires a large number of unknowns
for accurate modeling. The matrices of these structures are
often very poorly conditioned, and they do not exhibit the
diagonally dominant behavior that characterizes a well-
conditioned matrix.

In this paper, we introduce a novel approach referred to
here in as the MNM technique, which improves the
computational efficiency of iterative schemes used to solve
problems of the type mentioned above, when the solution
is desired over a range of frequencies, as is typically the
case in microwave circuit analysis and CAD design. The
MNM package is actually a combination of various
schemes which work in consort with each other to enhance
the performance of an iterative solver.
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The first step in this process entails the equilibration of
the coefficient matrix to reduce its condition number.
Next, we apply a Multi-Frontal Preconditioner (MFP) to
the equilibrated matrix to further decrease its condition
number. Finally, we derive an initial guess, during the
frequency sweeping process by following an algorithm
described below, which improves the convergence of the
iteration process further still.

A search through the literature reveals that numerous
attempts have been made in the past [3] to derive a good
guess for the solution via extrapolation (though not in the
context of iteration), derived from the solutions at previous
frequencies, but they have met with only limited success.
The approach proposed herein involves an estimation of
the solution vector based on the solutions at previous
frequencies. The computational time involved in
generating the estimate is negligible when compared to
that of the MoM matrix generation and iterative solution.

We demonstrate the effectiveness of the proposed
technique for improving the condition number via
equilibration and using the initial guess generated by the
MNM for preconditioned GMRES based iterative
solution, by several examples. The paper demonstrates that
the proposed technique helps improve the computational
efficiency of the iterative solvers considerably, not only
for MoM matrices associated with electrically large
geometries, but also for poorly-conditioned matrices with
a relatively small rank.

IL. THE MNM ALGORITHM

In general, the conventional MoM formulation of the
EM problem leads to a dense complex linear system of the
form:

AX =B 1¢)]

where A is an N x N complex coefficient matrix, B and X
are the known right hand side (RHS) and unknown
vectors, respectively.
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The performance of any iterative solver is critically
dependent on the condition number of the coefficient
matrix A. It is imperative that the condition number of the
matrix be improved before starting the iterative process. A
three-step strategy has been adopted in this effort to
improve the convergence behavior of the iterative solvers.

A. Equilibration

The first step is to equilibrate the matrix with a view to
improving its condition number. Towards this end, we
transform the original matrix A as follows:

Y = RAL )

where R and L are the N x N right and the left
equilibration diagonal matrices, and Y is the modified
system matrix. The R and L are computed so that the
maximum element in a given row or column of Y is unity.
Using (2) in (1) yields

R7'yL!'x =B 3)

which is then rearranged as follows:
Y X =RB (4a)
X=LX (4b)

B. Preconditioning

Next, the modified system of linear equations given in
(4a) is preconditioned by left-multiplying it with a matrix
M as shown below:

Mly X = M'RB 5)

The objective of this transformation is to improve the
condition number of coefficient matrix, which, in turn,
improves the convergence behavior of the iterative solver
over that of the original system. Once the intermediate
solution X’ has been obtained, the actual solution X may
be readily derived from (4b).

The preconditioning matrix M is derived by sparsifying
the coefficient matrix Y row-wise. The individual elements
of the resulting sparsified matrix M are generated as
follows.

M- Y |YU. > alY;“’

i ®
0

where Yiml is the magnitude of the largest element in the
row ‘i’, and « is the threshold factor which is taken to be
10™ for all the calculations presented in this paper. This
form of sparsification results in a general non-zero pattern,
which must be preserved in order for the solution
procedure to be efficient. The MFP uses a combined
unifrontal/multi-frontal approach to handle arbitrary

sparsity patterns to achieve a general reduction in the fill-
in [4]. The frontal approach involves finding a permutation
of A, which when factorized into its LU factors (PAQ =
LU where P and Q are permutation matrices), preserves
the sparsity and the numerical accuracy.

C. Initial guess generation

Typically one is interested in investigating the
performance of an MMIC design over a range of
frequencies. We show how the solution at previous
frequencies can be used to generate the initial estimate for
the present frequency via an extrapolation procedure. The
solutions at previous frequencies span a vector space C™
givén by

m

C e {xn_l, Xp20 - .,xn_m} @)

where the index ‘n’ corresponds to the current frequency at
which the solution is desired, ‘m’ refers to the number of
previous frequencies at which the solution is pre-computed
and ‘x’ is the solution vector. The vectors belonging to
C™ are next ortho-normalized by using a modified
version of the Gram-Schmidt technique.

Let X, be the it component of the modified vector

space and let x, be the solution to (1) that we desire to-
construct at the frequency ‘n’. An estimate of this
unknown vector may be generated by using a linear
combination of the previous frequency solutions belonging

to the modified C™ as follows.
m

© _ 5

Xy = ) ok, ®
whgre a's are the c'o?nlplex expansion coefficients, and
xg) is the initial estimate of the solution at the n®
frequency point. A possible solution for 'a' in (8) is then
obtained by minimizing the projection of the Ax.—B
along each of tlr}le vectors belonging to the mod’iﬁcd
function space C

III. ILLUSTRATIVE RESULTS

The MNM approach, described in the previous section,
has been applied to solve the MoM matrix equations
generated for five test cases: (a) inter-digital filter at
4.5GHz; (b) two-layer coupled patch antenna at 1.8GHz;
(¢) edge-coupled microstrip filter at 9GHz; (d) a
microstrip patch antenna with 7 radiating elements at
2.3GHz; and, (e) a microstrip patch antenna with 12
radiating elements at 2.3GHz. These test cases cover a
wide spectrum of typical EM problems ranging from
electrically-small MIC geometries (Cases -a and —), to
electrically-large geometries (Cases -b, -d, and -¢), all of
which lead to moderate-to-large size matrices.
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TABLEI
EFFECT OF EQUILIBRATION ON THE CONDITION NUMBER OF MOM MATRIX

Case # unknowns (N) L4 Condition number
Before EQU After EQU

(a) 729 30 x 10" 67 x 10°

(b) 961 18 x 10° 46 x 10°

(©) 1093 36 x 10° 44 x10°

(d) 2233 15 x 10 11x10°

(e) 3828 16 x 10° 12 x 10°

For Cases (a) and (c), a large number of unknowns are <10

required in the formulation of the problem because of a
very fine discretization, which is of the order of A/169 in 0.67 -
some regions. The number of unknowns in the test cases 0.5+ . ‘
varied from 729 to 3828. The condition number of the t .t
MoM matrix for each of the above 5 test cases are a 04f
presented in Table.1, before and after equilibration. The g 0.3
fine geometry discritization employed in the Cases (a) and ~§,
(c) resulted in a highly ill-conditioned MoM matrix witha ~ § *2 N
condition number of 30x10"' and 36x10* respectively, 0.1 et
while this number was more reasonable (~10° or less) for 0.0 yd
the rest of the examples. However, as seen from Table.1, "
the equilibration process improved the condition number 01 o 5 ” 20 20 4’610
considerably in all of these cases, and this effect was most Real Part

pronounced when the original matrix was highly ill-
conditioned.

Next, we examine the eigenspectrum of the MoM matrix
for Case-a before equilibration, and plot it in Fig.1a. It is
evident that the poor conditioning of the matrix results
from the presence of very small eigenvalues close to zero.
This is not entirely unexpected, since a fine discretization
renders some of the rows and columns of the original
matrix closely dependent, and thereby reduces its rank.
The eigen spectrum of My is presented in Fig.1b to
illustrate the fact that the equilibration together with the
MFP, described in the previous section, improves the
conditioning. It can be seen from Fig.1b that in contrast to
the widely spread spectrum of Fig.la, the eigenvalues of
the M™'Y are clustered around unity.

The performances of iterative solvers CGNR and
GMRES, have been studied for the five test cases
mentioned above, and the results are presented in Table.2.
The solution time for the LAPACK direct solver using
complete LU decomposition is also included in this table
for comparison. All the computations have been carried
out on a Pentium III 662MHz Xeon PC with a 512Mb
RAM, and a residual error of 0.001 has been chosen as the
convergence criterion for the iterative solvers. The CPU
time shown for the iterative solvers includes the time taken
for equilibration, generation of the preconditioner matrix,
as well as that needed by the iterative solver itself.

Fig.1a. Eigenspectrum of the original MoM matrix of Inter-
digital filter (Case-a) with 729 unknowns.
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Fig.1b. Eigen spectrum of the original MoM matrix of Inter-
digital filter (Case-a) with 729 unknowns after equilibration and
preconditioning.

The initial guess generation procedure for the iterative
solver is demonstrated by analyzing a 8 element microstrip
patch array antenna over a range of frequencies that
includes the patch resonance frequency. The number of
iterations required in order to achieve a residual error 1%
in the solution is presented as a function of frequency in
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TABLE II
COMPARISON OF THE PERFORMANCE OF VARIOUS SOLVERS

Case Direct Solution CGNR solver GMRES solver
time (s) # iterations solution time # iterations solution time

(s) (s)

(a) 4.70 9 3.40 4 1.37

(b) 10.70 6 5.23 5 3.40

(c) 15.85 12 11.32 5 4.82

(d) 248.84 7 19.36 6 10.11

(e) 1268.55 6 52.58 8 38.53

Fig.2 for this case. The number of iterations needed for the
iterative solver with the zero initial guess is also presented
for the sake of comparison. The frequency step is taken to
be 10MHz, and a 2-vector MNM has been used. It can be
seen that the iterative solver requires less number of
iterations when using the extrapolated initial guess over
the entire band except near the resonant frequency of
2.3GHz. The total CPU time taken by the solver with zero
initial guess is 962s, while it is 730s when using the
extrapolated initial guess.

10 - H
—— Zero initial guess i
8t - Extrapolated initial guess |
Ee
s
g 4
*
2}
0 I~ a 2 2
2.1 2.2 23 2.4
Frequency (GHz)

Fig.2. Number of iterations required for convergence for an 8
element microstrip patch array antenna. ;

All the computations have been carried out in double
precision arithmetic. It is seen that both the iterative
solvers are considerably faster than the direct solver even
for poorly conditioned matrices with a small number of
unknowns. The GMRES solver exhibited better
performance and took less than 10 iterations irrespective
of the number of unknowns. For a comparable number of
iterations (Cases -b and -d), the CGNR solver requires
nearly twice the CPU time when compared to the GMRES
solver due to the additional operations involving the
adjoint operator.

V. CONCLUSION

An efficient approach has been presented for the
solution of large dense system of linear equations arising
in the integral equation formulation of electromagnetic
problems. A three-step process-has been introduced in
which the condition number of the matrix is first improved
by equilibration, and then further enhanced by
preconditioning. The initial guess for the iterative solution
is generated by using an extrapolation technique. It has
been shown that the proposed approach considerably
improves the computational efficiency of the iterative
solvers, e.g., CGNR and GMRES, even for poorly
conditioned MoM matrices with a relatively small number
of unknowns.
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