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Abstract - This paper presents a novel technique referred 
to herein as MNM for efficient iterative solution of MOM 
matrices over a broad frequency range. It utilizes a 
combination of techniques to reduce the number of iterations 
required to generate the solution including a special choice of 
the initial guess, and efficient preconditioning. Numerical 
results are presented to illustrate the application of the MNM 
to representative microwave circuit analysis problems. 

The MoM formulation of Maxwell’s equations leads to 
a dense system of complex equations, with thousands of 
unknowns when the geometry is electrically large, or when 
it has tine features that need to be resolved with sufficient 
accuracy. A direct solution of large equations using LU 
factorization is computer-intensive and this prompts one to 
turn to iterative solvers, such as those based on Krylov 
projection methods not only to alleviate the memory 
problem but to speed up the solution process as well. 
Typically, these iterative methods are used in conjunction 
with some type of preconditioner to improve convergence 
of the process [l-2]. Most of these Preconditioners provide 
satisfactory performance only when the geometry of the 
problem is electrically large; however, a typical MMIC 
structure is often only a fraction of the wavelength in 
dimensions, but still requires a large number of unknowns 
for accurate modeling. The matrices of these structures are 
often very poorly conditioned, and they do not exhibit the 
diagonally dominant behavior that characterizes a well- 
conditioned matrix. 

In this paper, we introduce a novel approach referred to 
here in as the MNM technique, which improves the 
computational efficiency of iterative schemes used to solve 
problems of the type mentioned above, when the solution 
is desired over a range of frequencies, as is typically the 
case in microwave circuit analysis and CAD design. The 
MNM package is actually a combination of various 
schemes which work in consort with each other to enhance 
the performance of an iterative solver. 

The first step in this process entails the equilibration of 
the coefficient matrix to reduce its condition number. 
Next, we apply a Multi-Frontal Preconditioner (MFP) to 
the equilibrated matrix to further decrease its condition 
number. Finally, we derive an initial guess, during the 
frequency sweeping process by following an algorithm 
described below, which improves the convergence of the 
iteration process further still. 

A search through the literature reveals that numerous 
attempts have been made in the past [3] to derive a good 
guess for the solution via extrapolation (though not in the 
context of iteration), derived from the solutions at previous 
frequencies, but they have met with only limited success. 
The approach proposed herein involves an estimation of 
the solution vector based on the solutions at previous 
frequencies. The computational time involved in 
generating the estimate is negligible when compared to 
that of the MOM matrix generation and iterative solution. 

We demonstrate the effectiveness of the proposed 
technique for improving the condition number via 
equilibration and using the initial guess generated by the 
MNM for preconditioned GMRES based iterative 
solution, by several examples. The paper demonstrates that 
the proposed technique helps improve the computational 
efficiency of the iterative solvers considerably, not only 
for MOM matrices associated with electrically large 
geometries, but also for poorly-conditioned matrices with 
a relatively small rank. 

II. THE MNM ALGORITHM 

In general, the conventional MOM formulation of the 
EM problem leads to a dense complex linear system of the 
form: 

AX=B (1) 

where A is an N x N complex coefficient matrix, B and X 
are the known right hand side (RHS) and unknown 
vectors, respectively. 
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The performance of any iterative solver is critically 
dependent on the condition number of the coefficient 
matrix A. It is imperative that the condition number of the 
matrix be improved before starting the iterative process. A 
three-step strategy has been adopted in this effort to 
improve the convergence behavior of the iterative solvers. 

A. Equilibration 

The first step is to equilibrate the matrix with a view to 
improving its condition number. Towards this end, we 
transform the original matrix A as follows: 

Y= RAL (2) 

where R and L are the N x N right and the left 
equilibration diagonal matrices, and Y is the modified 
system matrix. The R and L are computed so that the 
maximum element in a given row or column of Y is unity. 
Using (2) in (1) yields 

R-’ Y L-’ X = B (3) 

which is then rearranged as follows: 

YX’=RB (44 

X=LX’ (4b) 

B. Preconditioning 

Next, the modified system of linear equations given in 
(4a) is preconditioned by left-multiplying it with a matrix 
M as shown below: 

M-‘Y X’ = M-‘RB (5) 

The objective of this transformation is to improve the 
condition number of coefficient matrix, which, in turn, 
improves the convergence behavior of the iterative solver 
over that of the original system. Once the intermediate 
solution X’ has been obtained, the actual solution X may 
be readily derived from (4b). 

The preconditioning matrix M is derived by sparsifying 
the coefficient matrix Y row-wise. The individual elements 
of the resulting sparsified matrix M are generated as 
follows. 

Mij = 

’ i 

Yij if IYijl > a IYin 

0 

where Yim 
1 d 

is the magnitude of the largest element in the 
row ‘i’, an cx is the threshold factor which is taken to be 
lOA for all the calculations presented in this paper. This 
form of sparsification results in a general non-zero pattern, 
which must be preserved in order for the solution 
procedure to be efficient. The MFP uses a combined 
unifrontalfmulti-frontal approach to handle arbitrary 

sparsity patterns to achieve a general reduction in the fill- 
in [4]. The frontal approach involves finding a permutation 
of A, which when factorized into its LU factors (PAQ = 
LU where P and Q are permutation matrices), preserves 
the sparsity and the numerical accuracy. 

C. Initial guess generation 

Typically one is interested in investigating the 
performance of an MMIC design over a range of 
frequencies. We show how the solution at previous 
frequencies can be used to generate the initial estimate for 
the present frequency via an extrapolation procedure. The 
solutions at previous frequencies span a vector space Cm 
givln by 

cm E {xn-*, Xn-p . . . 3 X”,} (7) 

where the index ‘n’ corresponds to the current frequency at 
which the solution is desired, ‘m’ refers to the number of 
previous frequencies at which the solution is pre-computed 
and ‘x’ is the solution vector. The vectors belonging to 
cm are next ortho-normalized by using a modified 
version of the Gram-Schmidt technique. 

Let knmi be the ith component of the modified vector 

space and let x, be the solution to (1) that we desire to ’ 
construct at the frequency ‘n’. An estimate of this 
unknown vector may be generated by using a linear 
combination of the previous frequency solutions belonging 

to the modified Cm as follows. 

(0) = m a 2 Xll c i n-t 

where a’s are the cbgplex expansion coefficients, and 
xw is the initial estimate of the solution at the n* 

friquency point. A possible solution for ‘CC’ in (8) is then 
obtained by minimizing the projection of the Ax -B 
along each of th,e vectors belonging to the mo lfied tit 
function space @ 

111. ILLUSTRATIVE RESULTS 

The MNM approach, described in the previous section, 
has been applied to solve the MOM matrix equations 
generated for five test cases: (a) inter-digital filter at 
4.5GHz; (b) two-layer coupled patch antenna at 1.8GHz; 
(c) edge-coupled microstrip filter at 9GHz; (d) a 
microstrip patch antenna with 7 radiating elements at 
2.3GHz; and, (e) a microstrip patch antenna with 12 
radiating elements at 2.3GHz. These test cases cover a 
wide spectrum of typical EM problems ranging from 
electric&ly-small MIC geometries (Cases -a and -c), to 
electrically-large geometries (Cases -b, -d, and 
which lead to moderate-to-large size matrices. 

4, all of 
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TABLE I 
EFFECTOFEQUILIBRATIONONTHECOND~IONNU~~BEROFMOMMATRIX 

Case # unknowns (N) Ll Condition number 

Before EQU AfterEQU 

(a) 729 30x10" 67~10~ 

(b) 961 18~10~ 46x10' 

(c) 1093 36~10~ 44x103 

(d) 2233 15x IO2 11 x10* 

(e) 3828 16x10* 12x10* 

For Cases (a) and (c), a large number of unknowns are 
required in the formulation of the problem because of a 
very tine discretization, which is of the order of h/169 in 
some regions. The number of unknowns in the test cases 
varied from 729 to 3828. The condition number of the 
MOM matrix for each of the above 5 test cases are 
presented in Table.1, before and after equilibration, The 
fine geometry discritization employed in the Cases (a) and 
(c) resulted in a highly ill-conditioned MOM matrix with a 
condition number of 30x10” and 36x104, respectively, 
while this number was more reasonable (-lo3 or less) for 
the rest of the examples. However, as seen from Table.1, 
the equilibration process improved the condition number 
considerably in all of these cases, and this effect was most 
pronounced when the original matrix was highly ill- 
conditioned. 

Next, we examine the eigenspectrum of the MOM matrix 
for Case-a before equilibration, and plot it in Fig.la. It is 
evident that the poor conditioning of the matrix results 
from the presence of very small eigenvalues close to zero. 
This is not entirely unexpected, since a fine discretization 
renders some of the rows and columns of the original 
matrix closely dependent, and thereby reduces its rank. 
The eigen spectrum of M-lY is presented in Fig. lb to 
illustrate the fact that the equilibration together with the 
MFP, described in the previous section, improves the 
conditioning. It can be seen from Fig.1 b that in contrast to 
the widely spread spectrum of Fig.la, the eigenvalues of 
the MS’Y are clustered around unity. 

The performances of iterative solvers CGNR and 
GMRES, have been studied for the five test cases 
mentioned above, and the results are presented in Table.2. 
The solution time for the LAPACK direct solver using 
complete LU decomposition is also included in this table 
for comparison. All the computations have been carried 
out on a Pentium III 662MHz Xeon PC with a 512Mb 
RAM, and a residual error of 0.00 1 has been chosen as the 
convergence criterion for the iterative solvers. The CPU 
time shown for the iterative solvers includes the time taken 
for equilibration, generation of the preconditioner matrix, 
as well as that needed by the iterative solver itself. 
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Fig. 1 a. Eigenspectrum of the original MOM matrix of Inter- 
digital filter (Case-a) with 729 unknowns. 
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Fig. lb. Eigen spectrum of the original MOM matrix of Inter- 
digital filter (Case-a) with 729 unknowns after equilibration and 
preconditioning. 

The initial guess generation procedure for the iterative 
solver is demonstrated by analyzing a 8 element microstrip 
patch array antenna over a range of frequencies that 
includes the patch resonance frequency. The number of 
iterations required in order to achieve a residual error 1% 
in the solution is presented as a function of frequency in 
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TABLE II 

COMPARISON OF THE PERFORMANCE OF VARIOUS SOLVERS 

I I 

I Case 
I 

Direct Solution CGNR solver 
I 

GMRES solver 
time (s) # iterations solution time # iterations solution time 

13.00 IL I i.JL 

248.84 7 19.36 
1268.55 6 52.58 

Fig.2 for this case. The number of iterations needed for the 
iterative solver with the zero initial guess is also presented 
for the sake of comparison. The frequency step is taken to 
be lOMHz, and a 2-vector MNM has been used. It can be 
seen that the iterative solver requires less number of 
iterations when using the extrapolated initial guess over 
the entire band except near the resonant frequency of 
2.3GHz. The total CPU time taken by the solver with zero 
initial guess is 962s, while it is 730s when using the 
extrapolated initial guess. 
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Fig.2. Number of iterations required for convergence for an 8 
element microstrip patch array antenna. I 

All the computations have been carried out in double 
precision arithmetic. It is seen that both the iterative 
solvers are considerably faster than the direct solver even 
for poorly conditioned matrices with a small number of 
unknowns. The GMRES solver exhibited better 
performance and took less than 10 iterations irrespective 
of the number of unknowns. For a comparable number of 
iterations (Cases -b and -d), the CGNR solver requires 
nearly twice the CPU time when compared to the GMRES 
solver due to the additional operations involving the 
adjoint operator. 

IV. CONCLUSION 

An efficient approach has been presented for the 
solution of large dense system of linear equations arising 
in the integral equation formulation of electromagnetic 
problems. A three-step process. has been introduced in 
which the condition number of the matrix is first improved 
by equilibration, and then further enhanced by 
preconditioning. The initial guess for the iterative solution 
is generated by using an extrapolation technique. It has 
been shown that the proposed approach considerably 
improves the computational efficiency of the iterative 
solvers, e.g., CGNR and GMRES, even for poorly 
conditioned MOM matrices with a relatively small number 
of unknowns. 
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